Ability of Trichoderma harzianum in the Formulation with Carbon Fiber and Silica Nano Particles to Control Damping Off (Sclerotium rolfsii) on Soybean Plants

  • Iman Ilahiyyat Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran
  • Hersanti Hersanti Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran
  • Luciana Djaya Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran
  • Sri Hartati Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Padjadjaran
  • Ferry Faizal Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadajaran, Indonesia
Keywords: soil-borne pathogens, biological agents, stem rot

Abstract

Sclerotium rolfsii is one of the soil-borne pathogens that cause damping-off and stem rot on soybean plants. One effort to control damping-off, which is environmentally friendly, is by using biological agents. Antagonistic microorganism that has been studied intensively and has a great potential to control soil-borne diseases is Trichoderma harzianum. The objectives of this research were to comprehend the ability of T. harzianum in a formulation with carbon fiber 80 mesh and silica nanoparticles (NPs.) and to determine the concentration of silica NPs. in the formulation that suppresses the in vitro growth of S. rolfsii and control the damping-off on soybean plants. The experiment was conducted in two phases. The first phase was in vitro experiment, arranged in a completely randomized design with 11 treatments and 3 replications. The second phase was in vivo test by using randomized complete block design, with 11 treatments and 3 replications. The in-vitro test showed that each treatment with T. harzianum in the formulation of silica NPs. and carbon fiber 80 mesh in various concentrations was able to suppress the S. rolfsii growth by 58.76- 80.92%. The treatment of single T. harzianum caused the highest suppression on S. rolfsii up to 80.92%. While the results of the in vivo test showed that the highest percentage of damping-off suppression was on the treatment of T. harzianum only, with 60% suppression.

References

Semangun, H.; Penyakit-penyakit Tanaman Pangan di Indonesia; Publsiher: Gadjah Mada University Press; Yogyakarta; 449p, ISBN 979-420-192-8.

Sastrahidayat, I. R.; Djauhari, S.; Saleh, N., and Hardiningsih, N.; Pemanfaatan Teknologi Pellet Mengandung Saproba Antagonis dan Endomikoriza (VAM) Untuk Mengendalikan Penyakit Rebah Semai (Sclerotium rolfsii) dan Meningkatkan Produksi Kedelai in Ringkasan Eksekutif Hasil-Hasil Penelitian Tahun 2007; Publisher: Kerjasama Kemitraan Penelitian Pertanian dengan Perguruan Tinggi (KKP3T);Jakarta, 2007; pp. 54–55.

Cook, R. J., and Baker, K. F.; Biological control of plant pathogen; Publisher: The American Phytopathological Society, St. Paul, Minnsota, 1983; 433 p.

Mohiddin, F. A.; Khan, M. R.; Khan, S. M.; and Hussain, B. Why Trichoderma is considered super hero (super fungus) against the evil parasites. Plant Pathol. J. 2010, 9, 92–102, DOI: 10.3923/ppj.2010.92.102.

Widyastuti, S. M.; Sumardi, S.; Sulthoni, A.; and Harjono, H. Pengendalian hayati penyakit akar merah pada akasia dengan Trichoderma spp. J. Perlind. Tan. Indon. 1998, 4(2), pp. 65–72, DOI: 10.22146/jpti.9901.

El-Hasan, S.A.; and S.R. Gowen. Formulation and delivery of the bacterial antagonist Basillus subtilis for management of lentil Vascular Wilt caused by Fusarium oxyporum f. sp. Lentis. J. phytopathology 2006, 154(2), pp. 148–155, DOI:10.1111/j.1439-0434.2006.01075.x.

Ardianto. Studi karakteristik komposit karbon batu bara/arang batok kelapa berukuran 250 mesh dengan matriks coal tar pitch, Undergraduate Thesis, Fakultas Teknik, Program Studi Teknik Metalurgi dan Material, Universitas Indonesia, Depok, 2011, pp. 7–10.

Joni, I M. (Universitas Padjadjaran, Bandung, West Java, Indonesia); Personal communication, 2016.

Dendan B. Uji Antagonisme Trichoderma spp. terhadap Ganoderma sp. yang menyerang tanaman sengon secara IN-VITRO. Wallacea J. For. Res. 2015, 4(2), pp. 147–156, DOI: 10.18330/jwallacea.2015.vol4iss2pp147-156.

Chet, I.; Henis, Y.; and Kislev, N. Ultra structure of Sclerotia and Hypae of Sclerotium rolfsii Sacc. Microbiology 1969 57(1), pp.143–147, DOI:10.1099/00221287-57-2-143.

Howell, C.R. Mechanisms emplyoded by trichoderma spesies in the biological control of plant diseases: the history and evolution of current concepts. plant dis. 2003, 87, pp. 4–10, DOI:10.1094/PDIS.2003.87.1.4.

Fadillah, S.; Djaya, L.; Hersanti; and Joni, I.M.; Viability of Pseudomonas fluoresens in nano silica and carbon fiber formulation, Proceeding of the 5th Asian PGPR Internasional Conference for Sustainable Agriculture, Bogor, 2017, pp. 143–144.

Rismaniar S., Viabilitas Bakteri Bacillus subtilis PGPR dalam Formulasi Serat Karbon 80 Mesh dan Nano Silika serta Kemampuannya Menekan Pertumbuhan Ralstonia solanacearum secara in vitro, Undergraduate Thesis, Universitas Padjadjaran, Bandung, 2017.

Hadisudarmo, P.; Biologi Tanah: Kajian Pengelolaan Tanah Berwawasan Lingkungan, Publisher: Galang Press, Yogyakarta, 2009.

Djaya, L.; Hersanti; and Joni, I.M.; Viability of Pseudomonas fluoresens in nano titanium and carbon fiber formulation and its ability to control Ralstonia Solanasearum under in vitro Conditions, Proceeding of the 5th Asian PGPR Internasional Conference for Sustainable Agriculture. Bogor, 2017, p137.

Benitez, T; Rincon, A.; Limon, M.C.; and Codon, A.C. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 2004, 7(4), pp. 249–260, DOI:10.2436/im.v7i4.9480.

Singh, V; Singh, P.; Yadav, R.L.; Awasthi S.K.; Joshi, B.B.; Singh, R.K.; Lal, R.J.; and Duttamajumder, S.K. Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. J. Hort. For. 2010, 2(4), pp. 66–71.

Yuliani, K.; Ngadiwiyana; Siswoyo, E.; Amaliah, D. A.; Wahyono, Y.; and Widianingrum. D. Pengaruh kombinasi silika dan kitosan berbasis nanoteknologi sebagai bahan dasar pembuatan pupuk nano slow release terhadap penyerapan unsur hara oleh tanamandalam meningkatkan hasil pertanian di Indonesia. Artikel Ilmiah Teknologi Kimia dan Industri, Universitas Diponegoro. Semarang 2015.

Dewi, Y. A.; Putra, E. T. S. P.; and Trisnowati, S. Induksi Ketahanan Delapan Hibrida Kelapa Sawit (Elaeis guineensis JACQ.) dengan Silika. Vegetalika 2014, 3(3), pp. 1–13. DOI:10.22146/veg.5154.

Sivan, A.; Ucko, O; and Chet, I. Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Disease 1987, 71, pp. 587–592, DOI:10.1094/PD-71-0587.

Alfizar; Marlina; and Hasanah, N. Upaya Pengendalian Penyakit Layu Fusarium oxysporum dengan Pemanfaatan Agen Hayati Cendawan FMA dan Trichoderma harzianum . Universitas Syiah Kuala Darussalam Banda Aceh. J. Floratek 2011, 6, pp. 8–17.

Aini, F. N.; Sukamto, S.; Wahyuni, D.; Suhesti, R. G.; and Ayunin, Q. Penghambatan pertumbuhan Colletotrichum gloeosporioides oleh Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis dan Pseudomonas fluorescens. Pelita Perkebunan 2013, 29(1), pp. 44–52.

Djajadi. Silika (Si): unsur hara penting dan menguntungkan bagi tanaman tebu (Saccharum officinarum L.). Perspektif 2013, 12 (1), pp. 47–55.

Epstein, E. Silicon. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1999, 50, pp. 641–664. DOI:10.1146/annurev.arplant.50.1.641.

Ma, J. F.; and Takahashi E. Soil, Fertilizer, and Plant Silicon Research in Japan; Publisher: Elsevier, Amsterdam, 2002, 294p, ISBN: 9780080525761.

Ellanvihara, M. Pertumbuhan dan Aktivitas Eksoprotease Bacilus licheniformis dan Bacillus mengaterium di Medium Ekstrak Limbah Padat udang. Undergraduate Thesis, Department of Biology, FMIPA Universitas Sebelas Maret Surakarta, 2005.

Published
2019-08-30